Cover Crops in High Tunnel Vegetable Systems

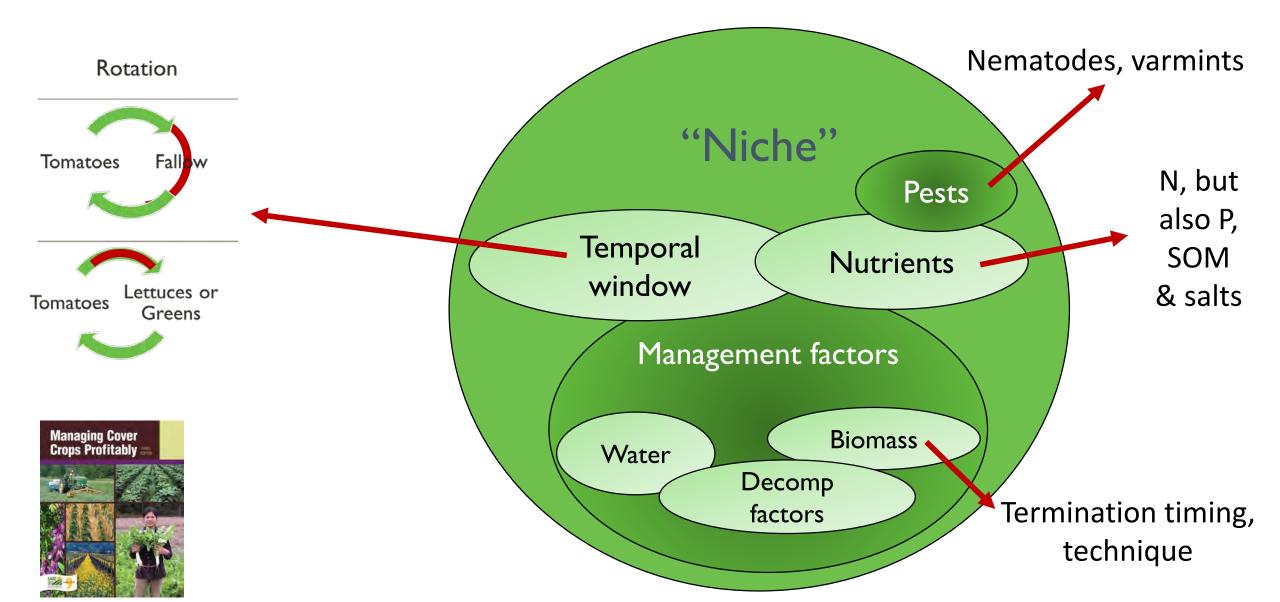
Krista Jacobsen, Associate Professor Department of Horticulture University of Kentucky

What is a high tunnel? Why is it so different than the open field?

- (Usually) unheated greenhouse structures
- (Usually) passively heated and ventilated
- Allow for season extension and year-round specialty crop production
- Small scale, high intensity production
 - 30-50% higher yields
 - 30' x 72-96' is relatively standard
 - Multi-bay systems can put a lot of acreage under plastic

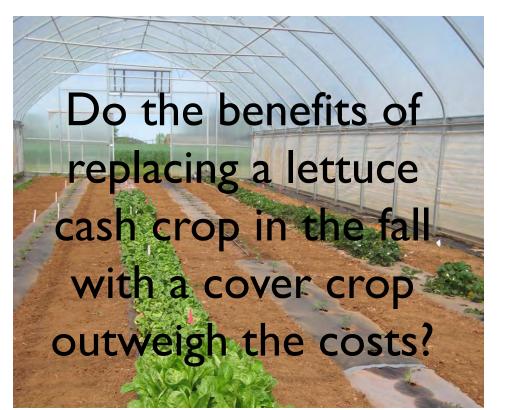
And we thought tunnels were big in the US!

National Geographic Magazine, February 2018

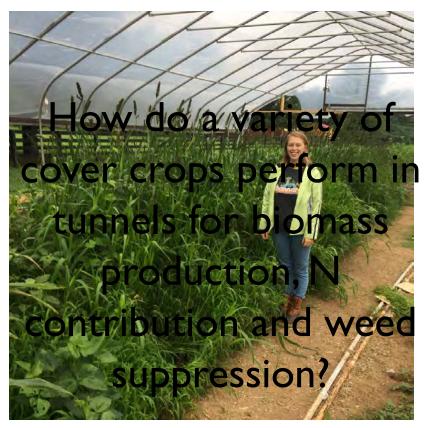

1 時上に 朝 新行 朝鮮 過しい し 化学 ほういかんでき あいと

High Tunnels: Intensively Cropped, Irrigated Deserts

- Generally warmer, but more <u>temperature</u> <u>variability</u> than open field
- Do not experience leaching rains, so <u>salts</u> (and nutrients) remain
- <u>Irrigation required</u> for both crop production and decomposition
- Warmer environment increases soil <u>organic matter</u> breakdown and nutrient mineralization
- Faster growth rates can make <u>nutrient</u> <u>deficiencies</u> worse



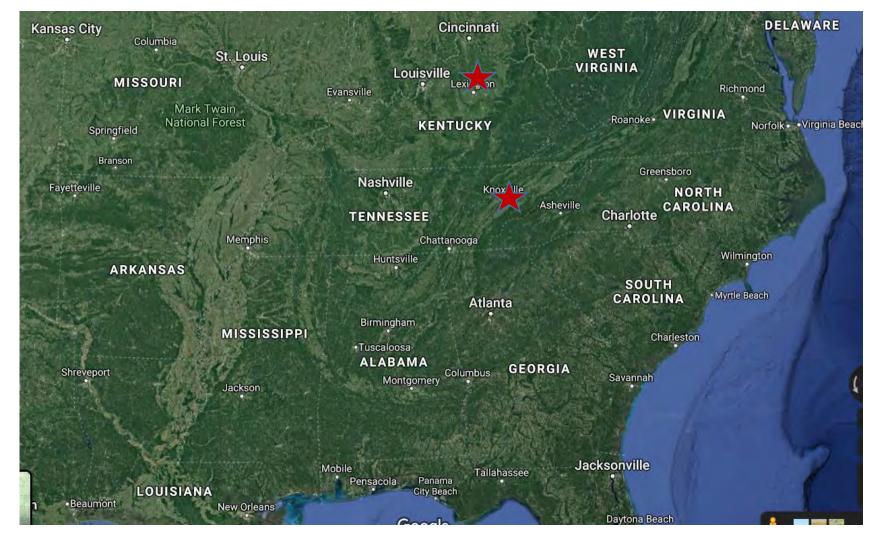
The High Tunnel "Cover Crop Niche"



Covers Crops Under Cover

I. Evaluating ecosystem services of cool season cover crops in high tunnel veg systems

II. Novel cover crops for high tunnel "niches"



Southern SARE R&E award LS16-272, and a Southern SARE YSE grant

Ecosystem Services Experimental Design

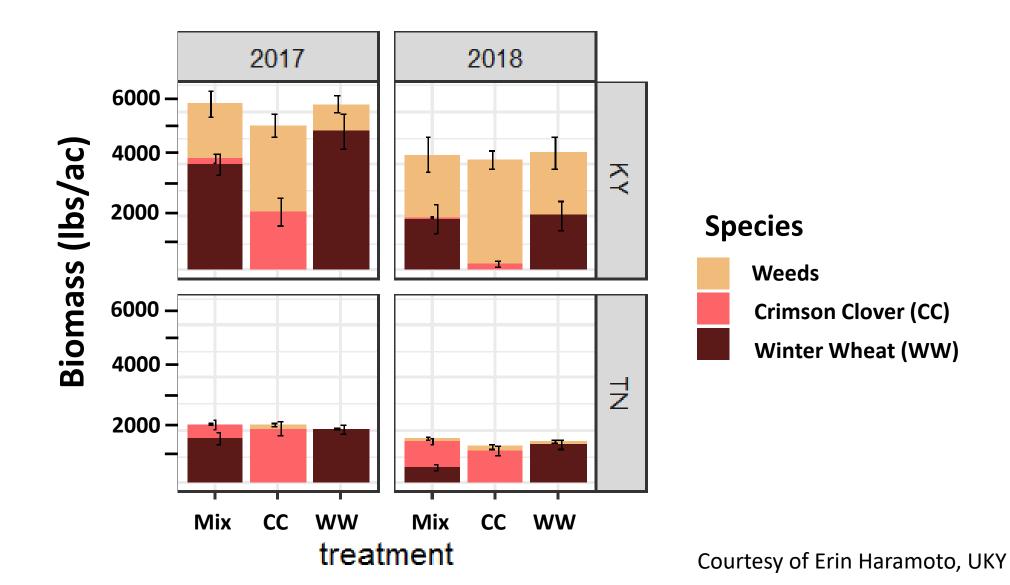
Two years, two sites

- Univ. of KY Lexington, KY
- Univ. of TN
 Knoxville, TN
- Fall 2016-Fall 2018

Ecosystem Services Experimental Design

4 fall-winter treatments:

- Winter wheat cover crop (125 lbs/acre)
- Crimson clover cover crop (30 lbs/acre)
- Wheat/clover mix cover crop (15 lbs/acre clover, 60 lbs/acre wheat)
- Lettuce cash crop ('Winter Density' and 'Kalura' romaine)



Ecosystem Services Experimental Design

- Plots were 30 ft beds per high tunnel (6 reps in KY, 8 reps in TN)
- Cover crops sown and lettuce planted Oct. 2016 and 2017
- Cover crops mowed early March 2017 and 2018, tilled in 5 days after mowing
- NatureSafe 8-5-5 spread about 2 weeks later and tilled in
- Fertilizer amount based on N credit from cover crop biomass (clover plots had less added fertilizer)
- Cover crop calculator to determine N from biomass:
 - <u>http://www.extension.uidaho.edu/nutrient/CC_Calculator/Cover_Crop_Main_page.htm</u>
- Tomatoes ('Early Girl') planted in all treatment beds in late March 2017 and 2018, 14 plants per plot

I. Evaluating ecosystem services of cool season cover crops in high tunnel veg systems

Cover Crop and Weed Biomass

I. Evaluating ecosystem services of cool season cover crops in high tunnel veg systems

Subjective Plant Health Ratings: UT

Treatment	Rating
Clover cover	7.7 a
Lettuce cash crop	6.8 ab
Wheat cover	5.7 b
Wheat/Clover bi-culture	7.2 ab

Ratings: I = least healthy to 10 = most healthy

Total Yield Data

No cover crop treatment effects, except in wheat in TN 2017.

	ſ	Marketable	and Total	harvest by	weight- sea	ason total fr	uit (lbs/plo	ot)
		Ken	tucky			Tenn	essee	
Treatment	20)17	20	18	20)17	20	918
	Mkt	Total	Mkt	Total	Mkt	Total	Mkt	Total
Cash crop	84.8	120.5	26.6	45.6	56.3	136.7 a	9.0	52.5
Clover	88.7	122.9	31.7	53.8	63.7	144.9 a	12.6	61.0
Mixture	86.7	117.2	26.2	50.4	57.8	136.7 a	15.2	55.6
Wheat	91.4	120.6	37.2	60.4	46.8	109.3 b	14.7	53.0
P-value	0.9455	0.9637	0.1303	0.6876	0.1051	0.0094	0.0762	0.8431

Courtesy of Jenny Moore, UT

Effects on soil properties, Kentucky

No substantial cover crop treatment effects.

Effect	PMN	POXC	P (lb/ac)	K (lb/ac)	рН	Ca (lb/ac)	Mg (lb/ac)	Zn (lb/ac)	Total_ N (%)	Soluble_Salts (mmhos/cm)	Total_C (%)
Treatment	0.1326	0.5210	0.3988	0.2554	0.2840	0.9133	0.5747	0.4540	0.7304	0.9971	0.8889
Depth	<.0001	0.0003	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
Treatment * Depth	0.4263	0.7758	0.9288	0.0923	0.0979	0.0397	0.0905	0.3593	0.4555	0.8876	0.3914
Date	<.0001	0.0230	0.1072	<.0001	0.0028	<.0001	0.0010	0.6525	0.0100	<.0001	0.0042
Treatment * Date	0.1862	0.0230	0.6124	0.5065	0.6123	0.9400	0.4141	0.5764	0.9675	0.7929	0.9294
Date * Depth	0.8273	0.2943	0.0250	0.3370	0.3575	0.2366	0.1668	0.0396	0.0015	0.0206	0.0082
Treatment * Depth * Date	0.5769	0.8831	0.7744	0.8317	0.8346	0.1374	0.5429	0.8885	0.3363	0.4481	0.5218

Proc Mixed, date*rep as random variables. P-values considered significant if $p \leq 0.05$.

Effects on soil properties, Kentucky site

			\frown										
Main effect		P (lb/ac)	K (lb/ac)	рН	Ca (lb/ac)	Mg (Ib/ac)	TotalTotalSoluble SaltsSeasonPMNN (%)C (%)(mmhos/cm)(lbs/ac)						
Date	2016	NS	304a	6.48a	5695a	572a	0.15ab	1.54a	0.42a	Fall	11.6ab	275ab	
										Spring	13.7ac	383a	
	2017	NS	245b	6.67b	5662a	747b	0.16a 1.76b 0.41a Fall 15.3c						
										Spring	8.8b	496a	
	2018	NS	181c	6.37ab	4433b	623a	0.14b	1.47a	0.23b	Fall	10.0b	358a	
Depth	0-6″	203a	296a	6.69a	5838a	789a	0.17a 1.82a 0.25a 13.6a						
	6-12"	272b	213b	6.33b	4689b	526b	0.13b	1.38b	0.48b		10.2b	273b	
			$\overline{)}$										

Effects on soil properties, Tennessee

Date and depth trends similar to KY, but some treatment effects in TN.

Effect	PMN	ΡΟΧϹ	P (lb/ac)	K (lb/ac)	рН	Ca (lb/ac)	Mg (lb/ac)	Zn (lb/ac)	Total_N (%)	Soluble_Salts (mmhos/cm)	Total_C (%)	
Treatment	0.6680	0.9391	0.0058	0.3252	0.0148	0.1609	0.0539	0.2723	0.1160	0.0189	0.2707	
Depth	0.8747<	< 0001	<.0001	<.0001	<.0001	<.0001	<.0001	0.0001	<.0001	<.0001	<.0001	
Treatment * Depth	0.5910	0.0564	0.7248	0.5798	0.8635	0.7321	0.3816	0.1608	0.9758	0.4567	0.2946	
Date	0.0003	<.0001	0.1327	<.0001	0.3086	0.0047	<.0001	<.0001	0.0439	0.0082	0.1113	Λ
Treatment * Date	0.0904	0.2692	0.1135	0.0221	0.0674	0.2925	0.0084	0.0267	0.0467	0.2957	0.3077	
Date * Depth	0.1935	0.4588	0.0176	0.4100 🔇	0.0005	0.0174	<.0001	<.0001	0.3295	0.0108	0.0331	
Treatment * Depth * Date	0.7067	0.0696	0.3600	0.8533	0.6517	0.7690	0.6062	0.7293	0.0930	0.2354	0.0674	

Effects on soil properties, Tennessee

Some indication that cover crops may help reduce P contributions in organic systems.

Main	effects	P (lb/ac)	K (lb/ac)	рН	Ca (lb/ac)	Mg (Ib/ac)	Total N (%)	Total C (%)	Soluble_Salts (mmhos/cm)	Season	POXC (lbs/ac)	PMN (lbs/ac)
	2016		280a		2911a	676a	0.0838a		0.23ab	Fall	203a	6.8a
	2010		2008		29114	070a	0.0050d		0.2580	Spring	428b	9.0a
Date	2017		228b		3052a	695a	0.0821a		0.27b	Fall	446b	15.9b
Date	2017		2200		303Za	0958	b		0.270	Spring	259a	ND
	2018		153c		2468b	497b	0.0763b		0.16b	Fall	393b	6.8a
	2018		1330		24000	4970	0.07030		0.100			
Depth	0-6″	100a	301a	5.76a	3269a	670a	0.0991a	1.15a	0.37a		426a	
Deptil	6-12"	25b	156b	5.41b	2352b	576b	0.6656b	0.83b	0.13b		258b	
	Continuous	62a		5.58a					0.20a			
	Crop	028		b								
	Grass Cover	49b		5.65a					0.21ab			
Treatment	Grass +			5.57a					0.21ab			
	Legume	53ab		b.57a								
	Cover											
	Legume	49b		5.55b					0.25b			
	Cover	730		5.550								

Summary

- The positive effects of cover crops can take several years to become apparent
- Cover crop treatments have complex effects on ecosystem properties, and cost/benefit varies by site/management goals
 - Cover crop treatments with legumes had yields comparable to lettuce plots with less fertilizer cost
 - Wheat was best at outcompeting weeds, but may have tied up N during tomato growing season
- High percentage of unmarketable fruit primarily due to YSDworse in 2018

Novel Covers Experimental Design

Warm Season	Cool Season
Sunn hemp	Balansa clover 'Fixation'
Sunn hemp 'AU golden'	Crimson clover 'Dixie'
Chinese red pea	Arrowleaf clover
Florida broadleaf mustard	Berseem clover
German millet	Persian clover 'Mihi'
Japanese millet	Alsike clover
Iron and clay pea	Festulolium '1015FL'
Red hemp	Triticale
Sesame	Annual ryegrass 'Nelson'
Sodbuster radish	Oats 'Bob'
Teosinte	Timothy 'KYPP9801
	Sunn hemp 'AU golden' Sunn hemp 'AU golden' Chinese red pea Florida broadleaf mustard German millet Japanese millet Japanese millet Iron and clay pea Red hemp Sesame Sodbuster radish

- Screening study in Lexington
 - 11 warm-season and 11 coolseason cover crops outside of the "traditional" crops used in the SE
- Focus on crops for rapid biomass production, weed suppression, and other desirable traits identified by participating farmers
- Participating growers in each project state: GA, KY and TN

Novel Covers Experimental Design

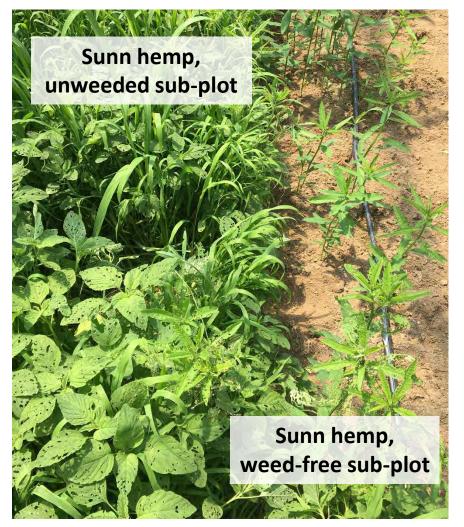
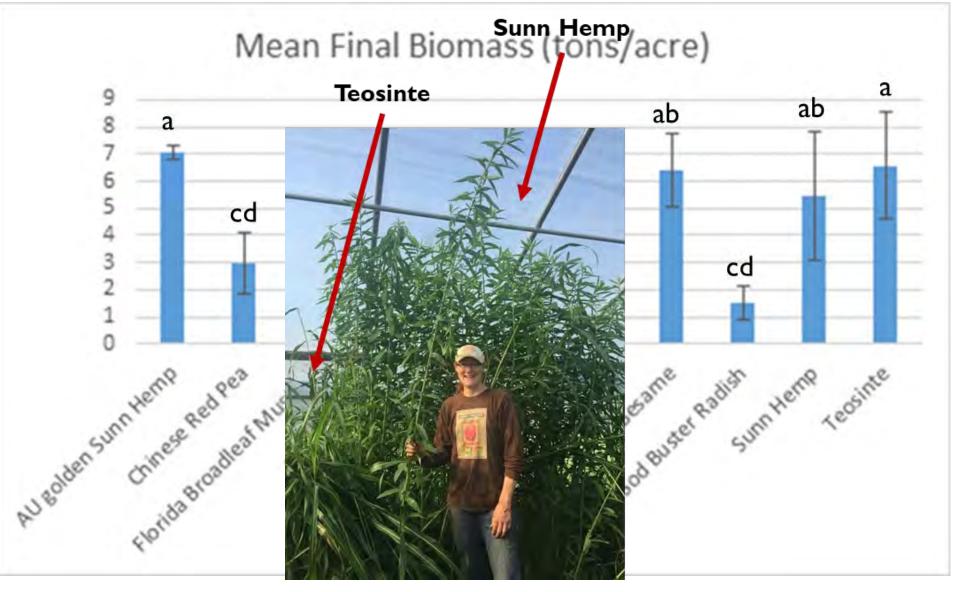



Photo take July 9, 2018 (24 days after seeding). Photo courtesy of Dr. Erin Haramoto.

- Plots 5' x 10'
- 3 replications (1 per tunnel)
- Two years
- Unweeded and weed-free subplots
- Regular biomass samples in each subplot
 - Monthly for cool season
 - Bi-monthly for warm season

Final warm season biomass, 2017

- Represents weed-free biomass at maturity
- Some promising new candidates for latermaturing pea and millets
- Too hot for the brassicas
- Too much biomass?

Participating Growers, GA 2018

Celia Barss, Woodland Gardens, Winterville, GA

Nicolas Donck, Crystal Organic Farm, Newborn, GA

Participating Growers, GA 2018

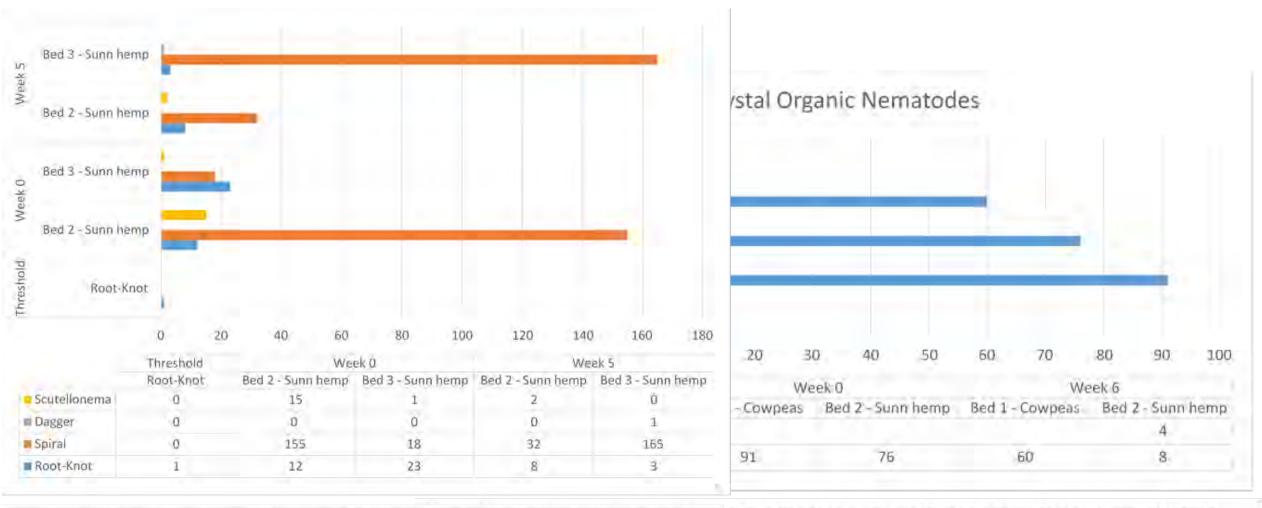


Figure 5. Nematode counts on Week 0 and Week 5 at Woodland Gardens Farm in Winterville, GA. 2018

0 and Week 6 at Crystal Organic Farm in Newborn, GA. 2018

Thank you!

Acknowledgements

Participating farmers

- Celia Barss, Woodland Gardens, GA
- Nicolas Donck, Crystal Organic Farm, GA
- Angie Quigley, For Pete's Sake Farm, KY
- Mark and Velvet Henkel, Henkel's Herbs and Heirlooms, KY
- John Ledbetter, Hines Valley Farm, TN

Co-Investigators and project staff

 Julia Gaskin (UGA), Annette Wszlacki (UT), Jenny Moore (UT), Erin Haramoto (UK), Tim Phillips (UK), Tim Woods (UK), Brett Wolff (UK), Jennifer Taylor (UK), Debendra Shrestha (UK), Alex Tracy (UK) and many more students, etc.

Southern SARE

Southern SARE R&E award LS16-272, and a Southern SARE YSE grant to Alexandra Tracy (2018)

