Estimating Nitrogen Release from Cover Crops

Miguel Cabrera, Julia Gaskin, Rick Hitchcock David Kissel, Lisa Woodruff, Carson Dann (UGA) **Resham Thapa, Steven Mirsky (USDA-ARS)** Kate Tully (Univ. of Maryland) **Chris Reberg-Horton (NCSU) Crop and Soil Sciences University of Georgia**

Overview

- Amount of N released from cover crop residues
- Factors affecting N release from crop residues
- A calculator to estimate N release from incorporated residues
- Diurnal change in water content of surface residues
- A model of water content of surface residues
- A calculator to estimate N release from surface residues
- A calculator to estimate N release form organic fertilizers

Why Use Cover Crops?

- Increase organic matter
- Reduce nutrient loss
- Reduce erosion
- Reduce weed pressure
- Protect water quality

- Provide beneficial insect habitat
- •Supply nitrogen to the following crop

Which Cover Crops can Release N?

- Legumes (crimson clover, cowpea, sunn hemp, lablab ...)
- Cereals at early stage (rye, oats, wheat ..)
- But, cereals at late stage immobilize N
- N immobilization example
 - Sorghum-sudangrass/cowpea cover crop
 - Biomass = 15,800 lb/a
 - % N = 1.06
 - Total N = 168 lb/a
 - Available N = 0 lb/a

Example - Nitrogen from Cowpea

(Vigna unguiculata-warm season cover crop)

Available N (lb N/a) 60 days 34 to 70 70 days 40 to 85 80 days 50 to 110

Example – Nitrogen from Sunn hemp

(Crotalaria juncea - warm season cover crop)

<u>Available N (lb N/a)</u> 60 days 50 to 75 90 days 75 to 140

Oat Cover Crop Quality at two Growth Stages

	2015	2016
Growth stage	Headed	Soft dough
Biomass (lb/ac)	7,300	11,000
N (%)	2.3	1.4
Carbohydrates (%)	41	38
Cellulose (%)	54	53
Lignin (%)	5	9
Total N (lb/a)	165	152
Avail. N (lb/a)	60	25

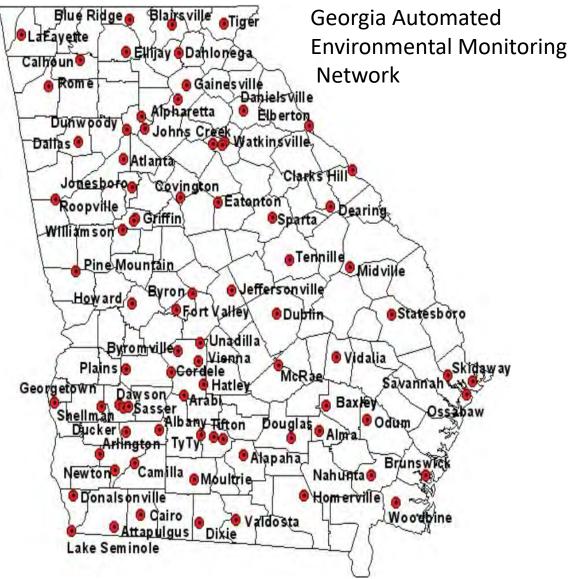
UNIVERSITY OF

Overview

- Amount of N released from cover crop residues
- Factors affecting N release from crop residues
- A calculator to estimate N release from incorporated residues
- Diurnal change in water content of surface residues
- A model of water content of surface residues
- A calculator to estimate N release from surface residues
- A calculator to estimate N release form organic fertilizers

Main Factors Affecting Nitrogen Release from Cover Crops

- Temperature and moisture
- Cover crop quality
 - ✓ Carbohydrates (speed decomposition)
 - ✓ Cellulose/hemicellulose
 - ✓ *Lignin (resistant to decomposition)*
 - ✓ Nitrogen content
 - ✓Affected by species, growth stage


Overview

- Amount of N released from cover crop residues
- Factors affecting N release from crop residues
- A calculator to estimate N release from incorporated residues
- Diurnal change in water content of surface residues
- A model of water content of surface residues
- A calculator to estimate N release from surface residues
- A calculator to estimate N release form organic fertilizers

Advances that Make N Estimation Possible

- Network of weather stations
- Available weather data:
 - Soil water content
 - Soil temperature

Advances that make N Estimation Possible

(Near-infrared spectroscopy (NIRS))

Quick turnaround and

cheaper than wet chemistry

- •Estimates cover crop quality:
 - Nitrogen

Lignin

- Non-structural carbohydrates
- •Cellulose-hemicellulose

Our General Procedure

- User measures wet cover crop biomass in field
 - "Cover Crop Biomass Sampling"
 - Sends subsample for analysis of:
 - Total nitrogen
 - Carbohydrates, cellulose, and lignin
- Use data from nearby weather station for soil moisture and temperature

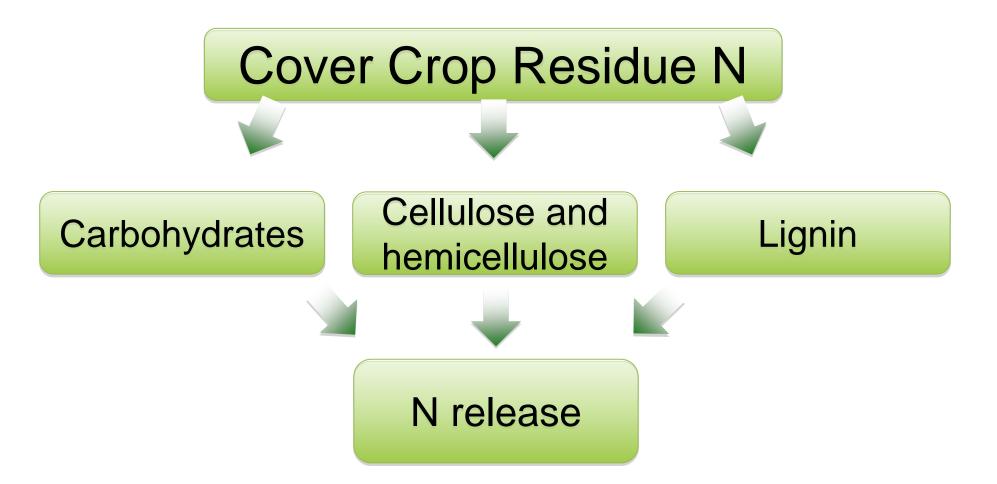
Proposition The Witholder Schwalderlyn aller Sandaran (Spracher 1973) prod Schlemer Theore Theore Schwalderlyn aller Spracher Schlemer 1973 Theorem Theorem Schlemer Schlemer 1973 (Schlemer Schlemer Kange Chiller Schlemer Schlemer Schlemer Schlemer (Schlemer Schlemer Kange Chiller Schlemer Schlemer Schlemer (Schlemer Schlemer

Introduction

Consumptions that is an outline moduli apportune outward practices that is made some out a function well write and the associability of their practice are specific that modules range and stops (the production dependence) whethar dependence outward origin at a constraint of over every of a short method in the integration and another is the benefits of the appoint and the above and the production of the production of the product and another the benefits of the appoint of the product of the prod

The amount of Nasak flot of featr insertiops produce cappage day some sheller produce the shortware for solutions battle and so the amount of the product instance on the solution cape saids only. Some solutions or with some table 1 days agree of these blocks or common tables.

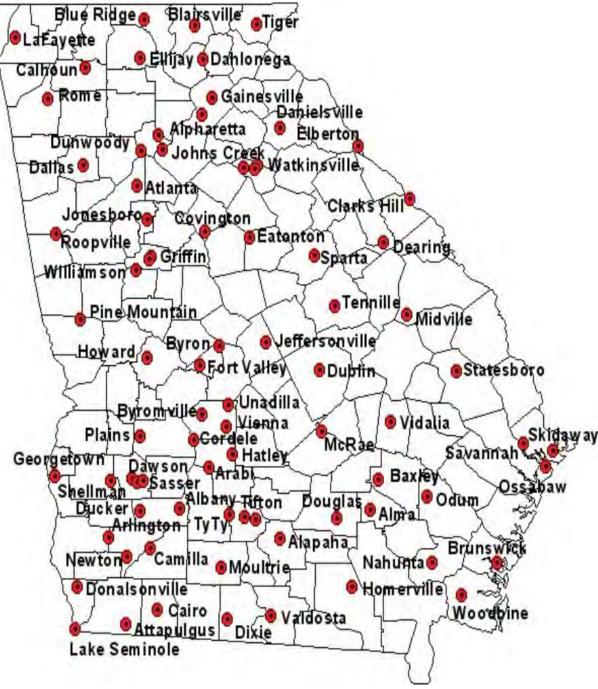
to your sectors that a produce category excession of the oral in the surface sector encountile on the start in the Sector cased on a torse of recently and es fully a present for the matter of a since care care care.


stream free much Storn as the eltery of elds a consult place of advantation to cover one many same. For many or resolutions around ran or 12, 0019-000 many set Stornes per consumer of the goal.

- Cover Crop N Availability Calculator predicts N mineralization/immobilization from cover crop residue
- Predicts nitrogen credit or debit for the season

Estimating N Mineralization from Cover Crops

http://aesl.ces.uga.edu/mineralization



COVER CROP NITROGEN AVAILABILITY CALCULATOR

COVER CROP NI	IKOGEN AVAILA	DILITTCAL	LCOLATOR	
CALCULATOR	INSTRUCTIONS		CONTACT	
If you need instructions, click the Instructions tab above.				
Please answer the questions below and click "Next Page" when co	mplete.			
Background				
 Was the cover crop residue analyzed by the Agricultural and Environmental Services Labs? If so, please enter the Lab Number. IF NOT, leave blank and enter data from another laboratory in the section below. 	<mark> 1567 ≑</mark> Lab No.			
Please enter the field name	Front Field			
Enter the sample ID	1			
To choose the closest weather station, what county is your farm located in? (OR Choose from <u>interactive map</u> .)	Clarke Using weather station at Horticulture Research			
What is the CASH crop?	Select a crop Brocc	oli		7
What is your target nitrogen fertilizer rate?	150 Ibs N/acre			
What is the planting date?	08/24/2015	mm/dd/yyyy		
What is the COVER CROP?	Select one or more cover cro	os Cowpeas		
When was the cover crop killed or incorporated?	08/01/2015	mm/dd/yyyy		

COVER CROP NITROGEN AVAILABILITY CALCULATOR

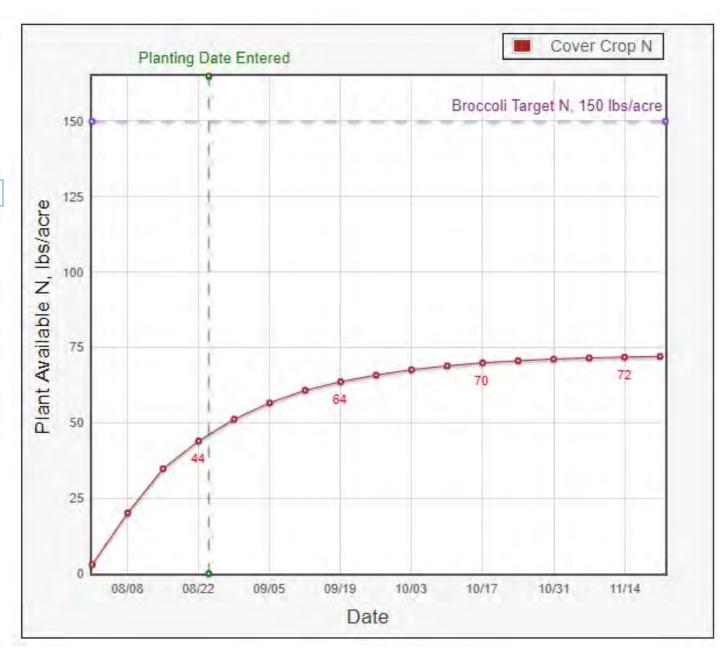
CALCULATOR	IN	ISTRUCTIONS	CONTACT	
Please answer the questions below and click "Next Page" when com	nplete.			
Background				
Is this a high organic matter soil? (High organic matter soils are usually those that have been managed using conservation tillage with cover crops or organically for at least three years.)	Ves 🛛	• No		
Cover crop residue will be	Incor	porated 🔍 Left on the surface	e	
Dry cover crop biomass	7,583			
Nitrogen in cover crop	2.9	0.3-5.0%		
Carbohydrates in cover crop	43	0-100%		
Cellulose in cover crop	52	0-100%		
Lignin in cover crop	5	0-100%		
Carbohy	ydrates + C	Cellulose + Lignin should equal 100%		

COVER CROP NITROGEN AVAILABILITY CALCULATOR

	CALCULATOR	INSTRUCTIONS	CONTACT	
RESULTS: Wide Bot	ttom Farm — Front Field - 1			
Your cover crop	Cowpeas was terminated on	08/01/2015		
The cover crop is p	predicted to release 78	bs of N per acre from the aboveground biom	nass over three months. This is a N	credit
The cover crop is p	predicted to release:			
• 29	Ibs of N per acre in the first two	weeks after termination.		
• 59	Ibs of N per acre in the first four	weeks after termination.		
Your target nitroge	n fertilizer rate was 150	lbs N/ac.		
Your recommended	I N after the cover crop is 72	Ibs N/ac.		

The available N reported above from the cover crop decompositions is considered a N credit if positive or a debit if negative. The amount of N fertilizer recommended may be reduced by a credit or increased by a debit. Here are examples:

N Credit Example:	N Debit Example:		
Recommended or Target N = 150 lbs N/ac	Recommended or Target N = 150 lbs N/ac		
Predicted Cover Crop N = 50 lbs N/ac	Predicted Cover Crop N = -20 lbs N/ac		
Recommended N after Credit = 150 - 50 = 100 lbs N/ac	Recommended N after Debit = 150 - (-20) = 150 +20 = 170 lbs N/ac		



In addition to the amount of available N released from your cover crop, when it is released is important to guide your N management. Wide Bottom Farm Front Field - 1

This graph will give you an idea about when the N is being released. Days after cover crop termination is on the horizontal axis and amount of available N on the vertical axis. To determine how much available N will be available at a given time, follow a vertical line up from a date to the plotted curve.

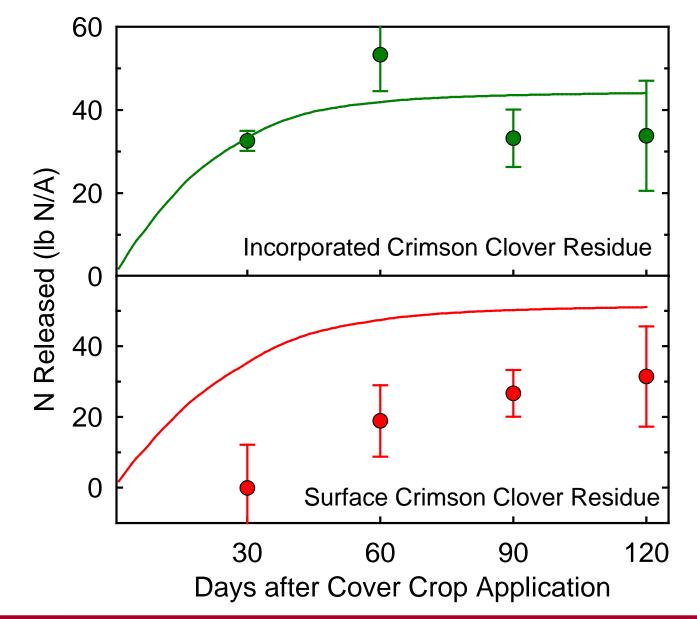
The steepness of the plotted line indicates how rapidly N is released.

This graph may help you decide if you want to adjust your N fertilizer at planting or sidedress.

Cowpea as Partial N Source for Broccoli

Cover Crop	Total N	Fertilizer N	Cover Crop N	Broccoli Yield
		kg N h	าล ⁻¹	kg ha⁻¹
		20	13	
No	0	0	0	1254 b
No	56	56	0	3057 a
Yes	56	10	46	3296 a
2014				
No	0	0	0	1355 b
No	84	84	0	3329 a
Yes	84	37	47	3481 a
		202	15	
No	0	0	0	2478 b
No	84	84	0	5555 a
Yes	84	20	64	4820 a

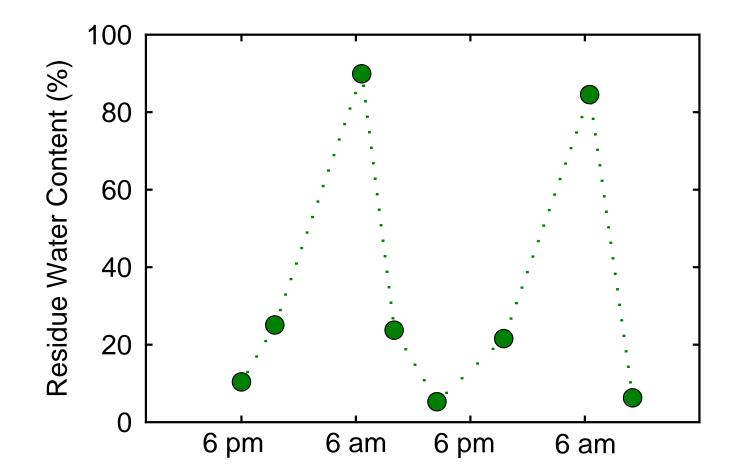
Cost-Effective Supply of Nitrogen for Organic Vegetable Production


- Example Broccoli 150 kg N/ha
- Feathermeal as a N source?
 - \$1600/ha to supply 150 kg N/ha
- Cowpea/feathermeal as N sources?
 - Cowpea establishment cost \$110/ha
 - Cowpea supplied 60 kg N/ha
 - Feathermeal provided 90 kg N/ha \$1000
 - Total cost: \$110 + \$1000 = \$1110/ha
- No difference in yield

UNIVERSITY OF

• Cost savings: \$1600 - 1110 =\$490/ha

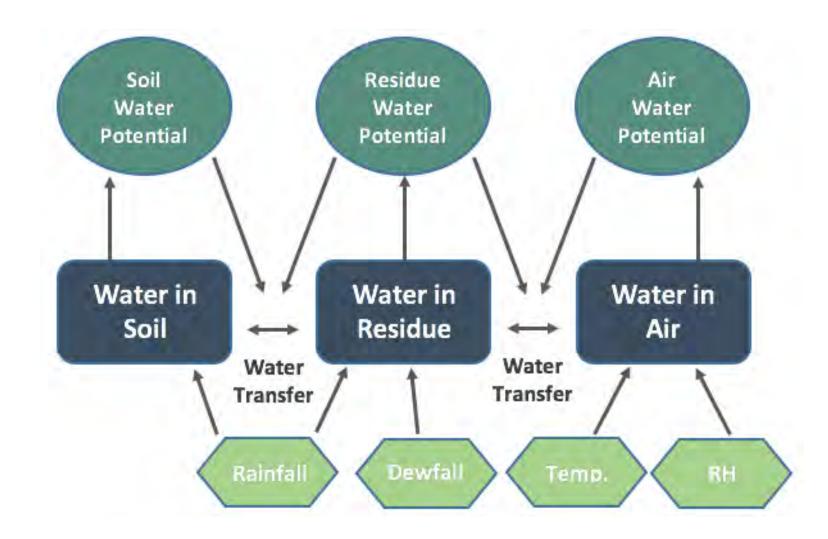
Nitrogen Overestimation for Surface Residues


Overview

- Amount of N released from cover crop residues
- Factors affecting N release from crop residues
- A calculator to estimate N release from incorporated residues
- Diurnal change in water content of surface residues
- A model of water content of surface residues
- A calculator to estimate N release from surface residues
- A calculator to estimate N release form organic fertilizers

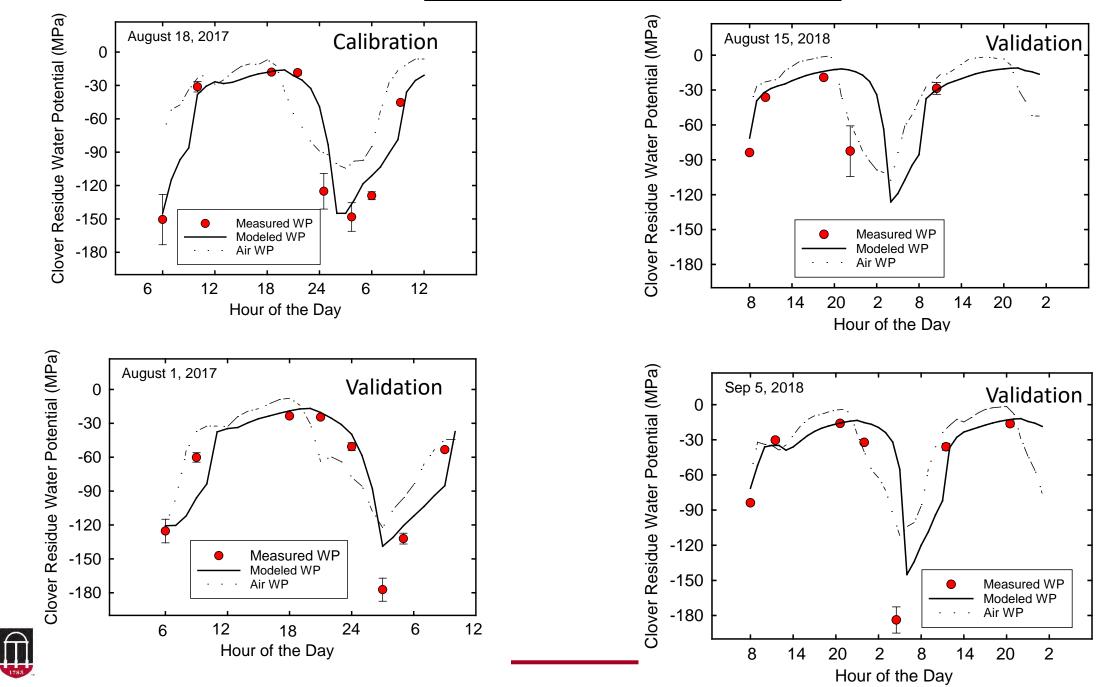
Daily Change in Water Content of Surface

Crimson Clover Residue

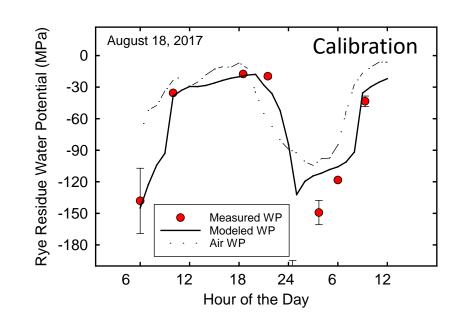


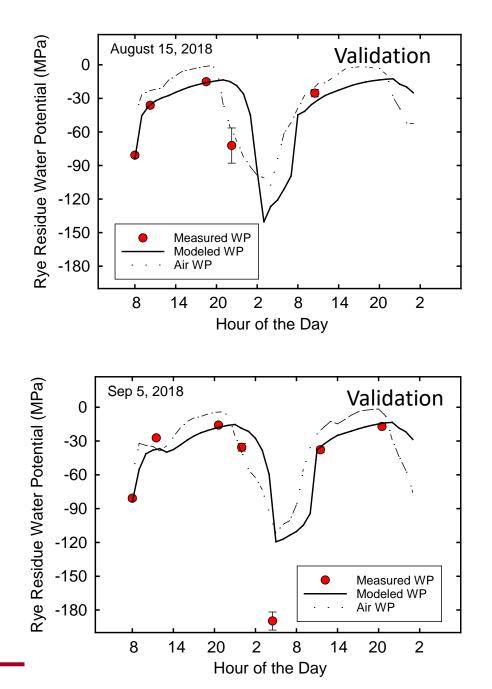
Overview

- Amount of N released from cover crop residues
- Factors affecting N release from crop residues
- A calculator to estimate N release from incorporated residues
- Diurnal change in water content of surface residues
- A model of water content of surface residues
- A calculator to estimate N release from surface residues
- A calculator to estimate N release form organic fertilizers



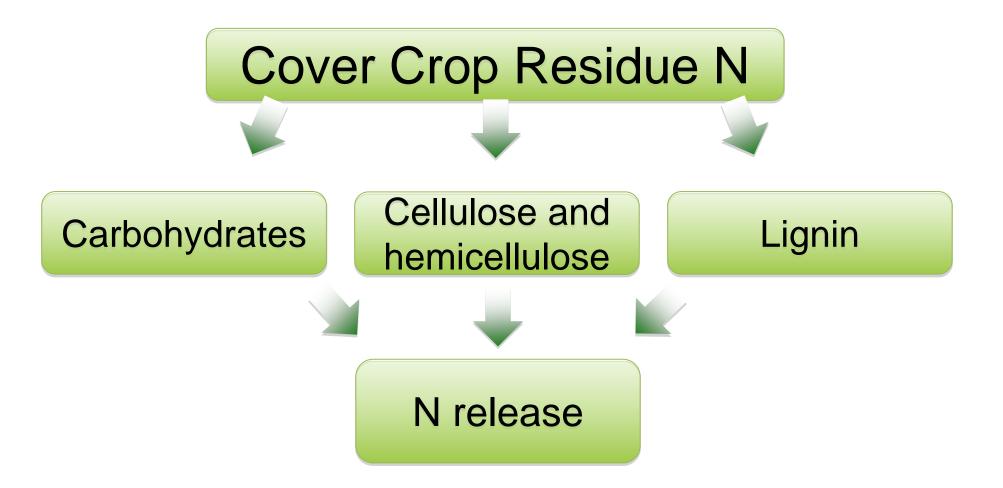
Model of Water Content of Surface Residue





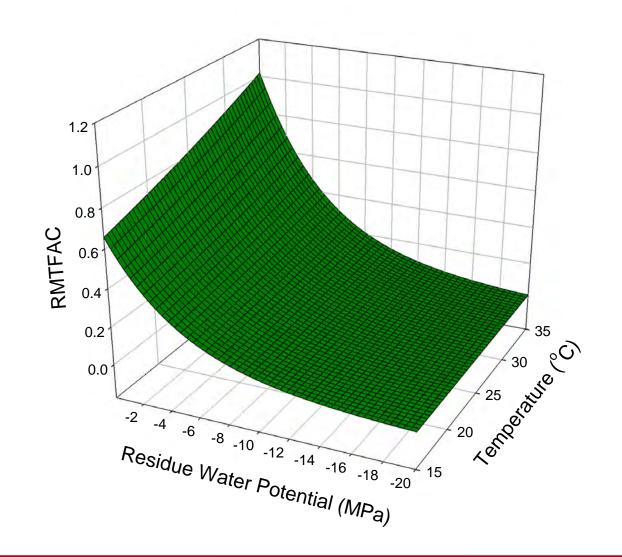
Crimson Clover Residue on the Soil Surface

Rye Residue on the Soil Surface



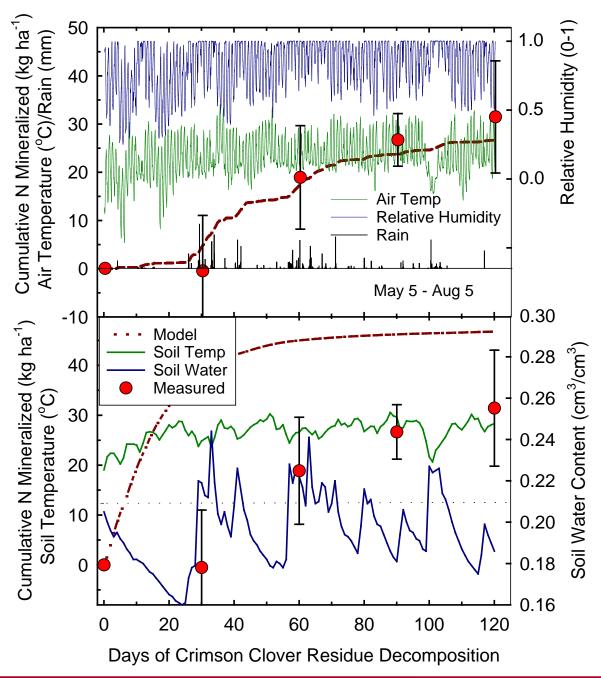
Overview

- Amount of N released from cover crop residues
- Factors affecting N release from crop residues
- A calculator to estimate N release from incorporated residues
- Diurnal change in water content of surface residues
- A model of water content of surface residues
- A calculator to estimate N release from surface residues
- A calculator to estimate N release form organic fertilizers



Estimating N Mineralization from Cover Crops

RMTFAC for Crimson Clover Residue RMTFAC = exp(-0.741356+0.02187*Temp+0.19804*MPa) $R^2=0.99$

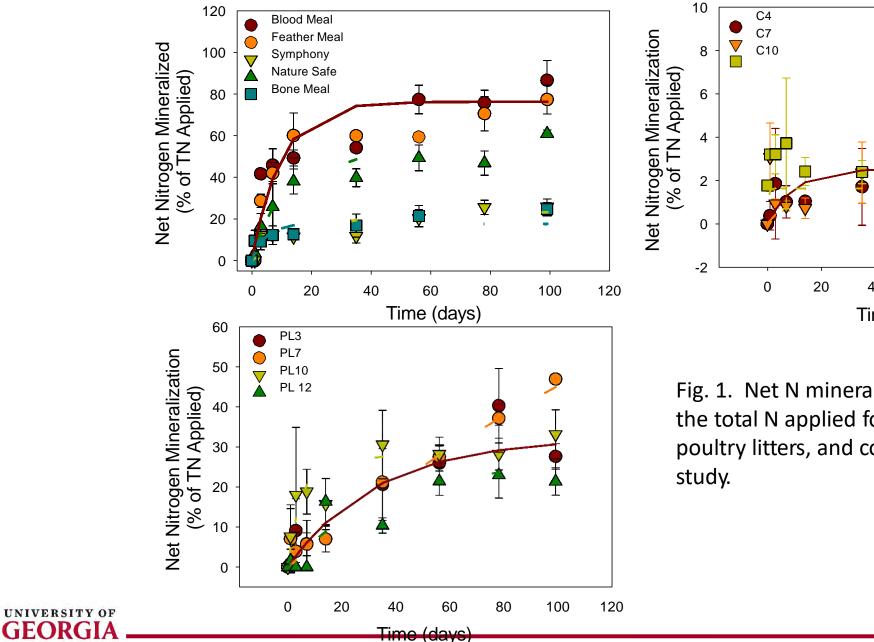


Thapa et al., 2019

UNIVERSITY OF GEORGIA

Overview

- Amount of N released from cover crop residues
- Factors affecting N release from crop residues
- A calculator to estimate N release from incorporated residues
- Diurnal change in water content of surface residues
- A model of water content of surface residues
- A calculator to estimate N release from surface residues
- A calculator to estimate N release form organic fertilizers



- Organic producers need estimates of N mineralized from organic fertilizers
- 50+ organic fertilizers were evaluated for kinetics of N mineralization

		Total N	C:N
	g k	g ⁻¹	
Poultry Litters			
PL1	254	31	8.1
PL2	366	37	10.0
PL3	346	44	7.9
PL4	376	36	10.3
PL5	396	47	8.4
PL6	318	39	8.1
PL7	347	37	9.4
PL8	420	52	8.0
PL9	338	42	8.0
PL10	282	43	6.6
PL11	344	40	8.7
PL12	387	46	8.5
PL13	405	41	9.9
PL14	428	55	7.8
PL15	374	39	9.6
Composts			
C1	337	31	10.8
C2	524	41	12.8
C3	235	8	27.8
C4	171	16	10.9
C5	298	3	103.5
C6	266	16	17.0
C7	281	25	11.0
C8	507	11	46.1
C9	229	10	23.0
C10	200	13	14.9
C11	348	19	18.0
Fertilizers			
Sodium Nitrate	3	153	0.0
Blood Meal	548	144	3.8
Feather Meal	552	154	3.6
Symphony	358	53	6.8
Fish Meal	449	113	4.0
Crab Shell	262	48	5.5
Alfalfa Meal	477	30	16.1
Harmony	332	54	6.2
Fish Mix	375	82	4.6
Mustard Seed	541	63	8.6
Veggie Mix	396	76	5.2
Soybean Meal	471	71	6.7

(pei)def (

Fig. 1. Net N mineralization as a percent of the total N applied for selected fertilizers, poultry litters, and composts use in this study.

Modeled versus measured values for net N mineralized

Modeled Net Nmin g kg⁻¹ material

ORGANIC FERTILIZER NITROGEN AVAILABILITY CALCULATOR

CONTACT

WELCOME

CALCULATOR

RESEARCH

Welcome

Organic producers use a wide variety of nitrogen fertilizers from commercial products (made from animal byproducts and seed meals) to manures and composts. These organic N sources must undergo mineralization to become plant available inorganic N. How quickly these organic N sources mineralize depends on the amount of microbial activity, which also depends on the nitrogen concentration of the organic N source and local weather conditions. This calculator aids in estimating the N available from different organic fertilizers, composts, and poultry litters based on a laboratory analysis of your N sources and your local weather station data, allowing you to make better decisions on when and how much of the organic N sources to apply.

What to Expect from the Nitrogen Calculator

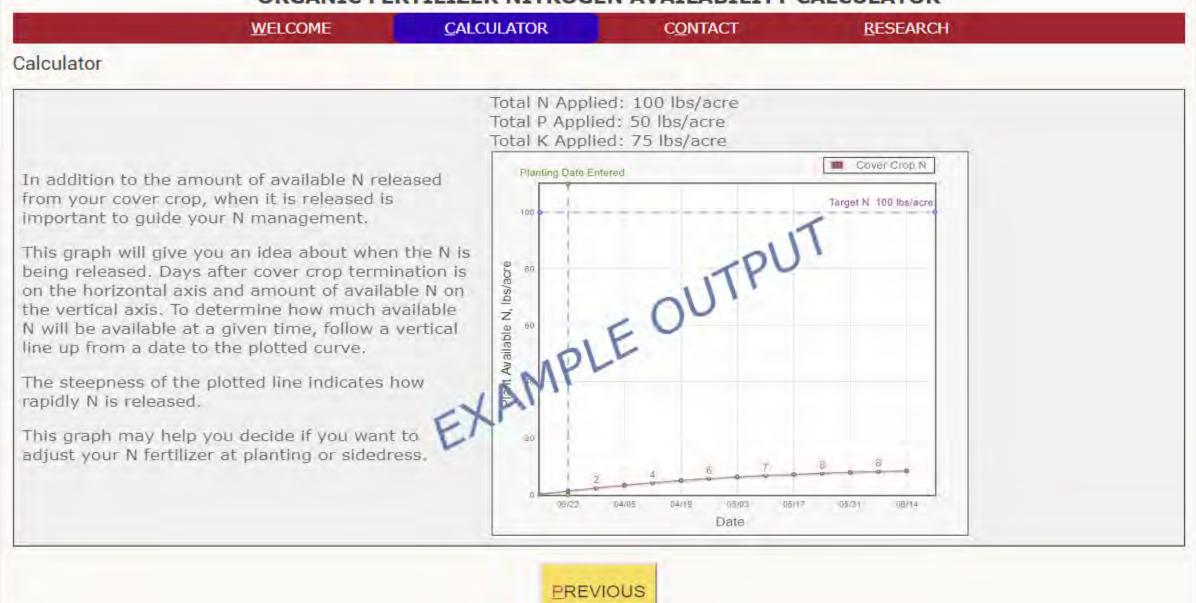
This calculator will aid in predicting how much nitrogen will be available to your crop and when it will be available from the application of poultry litter, composts, and/or organic N fertilizers. Using data collected from the SSARE grant, over 50 materials were used to develop the calculator. By selecting the weather station closest to your farm, the calculator will give estimates of the release of nitrogen over the growing season, which can be combined with nitrogen credits from our cover crop calculator to estimate the N available to your crop.

Instructions

Using the calculator tab located in the bar above, answer questions in order. Please feel free to use the contact tab for any help with the calculator.

Site Navigation: <u>Sitemap</u> <u>A-Z Index</u> <u>Personnel Directory</u> <u>Privacy Policy</u> <u>Accessibility Statement</u>

Connect with CAES:



Intranet CAES News CAES Events CAES Home

WELCOME	CALCULATOR	CONTACT	RESEARCH
ulator s information Correct? If not, click a data point to edit it			
Weather Station: Horticulture Research Farm Target Rate of Nitrogen: 100 lbs N/acre Crop: Lettuce Planting Date: 05/01/2019 Days to Harvest: 40 Nitrogen Credit From Cover Crop: 15 lbs N/acre	 N-P-K: 13- Application Date Applie Second Org N-P-K: 12- 	Rate: 10 lbs/acre d: 04/10/2019 anic Fertilizer: Blood Meal 0-0	 Inorganic Fertilizer N-P-K: 3-1-0 Application Rate: 4 lbs/acre Date Applied: 03/15/2019 Second Inorganic Fertilizer N-P-K: 1-5-0
Poultry Litter: 5 lbs/acre N-P-K: 2.9-2.6-2.8 Date Applied: 03/19/2019 Incorporated: NO	 Date Applie Third Organ N-P-K: 6-3 Application 	Rate: 5 lbs/acre d: 04/10/2019 nic Fertilizer: Cottonseed Meal -2 Rate: 2 lbs/acre d: 04/10/2019	 Application Rate: 2 lbs/acre Date Applied: 03/15/2019 Third Inorganic Fertilizer N-P-K: 0-0-3 Application Rate: 1 lbs/acre Date Applied: 03/15/2019

ORGANIC FERTILIZER NITROGEN AVAILABILITY CALCULATOR

Summary

- Residues of legumes and early-stage cereals can supply significant amounts of N to the subsequent crop.
- A web model that uses residue quality, soil moisture, and temperature can estimate the amount of N released from *incorporated* cover crop residues.
- Model is available at: **aesl.ces.uga.edu/mineralization**.
- Work is in progress to add the capability to estimate N release from surface residues taking into account air temperature and relative humidity.
- A web model will be available to estimate the amount of N released from organic fertilizers (driven by temperature and water content).

Summary

- Residues of legumes and early-stage cereals can supply significant amounts of N to the subsequent crop.
- A web model that uses residue quality, soil moisture, and temperature can estimate the amount of N released from *incorporated* cover crop residues.
- Model is available at: **aesl.ces.uga.edu/mineralization**.
- Work is in progress to add the capability to estimate N release from *surface residues* taking into account air temperature and relative humidity.

